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TECHNICAL NOTE 3968

THE APPLICATION OF MATRIX METEOIE TO COORDINATE

TRANSFORMATIONS OCCURRING IN SYSTEIS STUDIES

INVOLVING LARGE MOTIONS OF AIRCRAFT

By Brian F. Doolin

The purpose of this paper is to show the method and advantages of
matrix algebra in setting up the geometric aspects of problems of airplane
motion. Such aspects arise particularly when studies of systems which
include aircraft are being ~de. We geometry 2s formulated by fixing
quantities whose relative motions are to be studied, each in a coordinate
system of its own. The various coordinate systems are related to each
other by orthogonal trsmsformations in matrix form, m d the parameters
defirdng the transformations are found in terms of the dynamical variables
of the problem with the help of the transformation matrices. The compact

h notation of matrix algebra permits a clear view of the geometry involved.
Use of matrix algebra provides a routine procedure for com~ting the
detailed expressions required in a particular problem. The first part

u of the paper discusses those aspects of matrix algebra required for use
in orthogonal transformations. The second part shows how to use orthogonal
transformations in matrix form by applying them in several examples.

INTRODUCTION

There are my problems currently under study that concern the mtion
of one or more aircraft over relatively long periods of time. For example,
long trajectories are involved in some studies of very high-altitude, high-
speed aircraft. Another example is provided %y current ftie-control
systems studies where tie relative motion of two aircraft is involved.
The elements of interest in such problems, in one case the ~sition and
atti’cudeof the aircraft with respect to a nonflat earth, in another the
relative positions and rates of the two aircraft, are referred to coordi-
nate systems that undergo large changes in orientation. The formulation
of these problems for study, say, on an electronic analog computer,
requires the expression of these large orientation changes by me~s of
orthogonal transformations. These transformations refer the coordinate
systems, in which the elements of interest are inibedded,to an initial
coordinate s~tem whose orientation is fixed.
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The equations that express the transformed components of a quantity
cem be obtained in a simple fashion if the orthogonal transformations of
the coordinate systems involved are written in mtrix form and the rules

?.

of utrix algebra followed. lhe matrices that perform orthogonal trans-
formations are rotation matrices. A description of their properties and
the algebra they satisfy - that is, the rules by which such operations
as addition and multiplication are performed - can be found in many places
(see, e.g., refs. 1,2,3, and4). ‘Iheirapplication to certain aspects
of problems concerning aircraft is illustrated in references 1, 5, and 8.
One purpose of the present paper is to present the matrix method of per-
forming orthogonal transformations in as simple a msmner as possible, to
describe its algebra, and to illustrate the algebra in useby several
examples.

The examples in this @per will serve a second purpose, namely to
show that the complete geometry of the problem under study can be ~ressed
in matrix form. By Mbedding any element of interest in a coordinate
system, and by following this coordinate system by means of matrices as
it rotates with respect to all other elements of the problem which are
fixed in rotating coordinates of their own, a single matrix ~ression
for the over-all geometry is obtained. From such an expression the
expression relating smy two qu=tities of interest can be derived in a
routine manner. J?urthermore,since in ay problem there are a numiberof

—

ways of choosing an appropriate set of rotating coordinate systems, the A
compact notation of matrices which provides a clear view of the geometry
of the problem is especially valuable in permitting the examination of
various possible Eholces of sets of coordinates, thus facilitating selec- V
tion of one set that may simplify the representation of the geometry on
a computing machine. The matrix notation permits this examination to
proceed without detailed computation having to be performed.

Once the choice of coordinates has been made, the parameters that
specify them, such as the angles cp,0, and w that express the orientation
of an airplane, can be determined in terms of quantities that occur in the
problem solution, such as the airplane rotation rates p, q, and r. The
examples in the present paper also show how the determination of these
parameters, or their rates of change, canbe obtainedby matrix methods.
Thus all the geometric expressions required in these problems can be
obtained by the regular and routine application of matrix methods. --

A question of notation arises from problems such as those described
in this paper. Not only are there several quantities of interest in each
problem, but some of these quantities have to be expressed in several
coordinate systems. The notation adopted in this paper to satisfy the
requirements of this type of problem is described briefly in the text and
more fully in the Appendix.

,
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DISCUSSION OF BASIC!PROPERTIES OF ROTATION MATRICES

The first part of the present paper is intended for those readers
who either are not at all familiar with the algebra of matrices or are
not accustomed to thinking of matrices in terms of their properties of
performing rotations. The fundamental matrix algebra, such as the con-
ventions governing adtition aud multiplication, will be presented in a
general manner. Orthogonal matrices (wMch perform only rotations, and
therefore will.be called rotation matrices] form a special group of
matrices and have properties, not possessed by other matrices, whidh
simplify their manipulation. Such properties will be pointed out and
subsequently often used.

A glance at the examples in later parts of this paper will show that
the matrices required in a single problem may form a long chain performing
rotations in succession. The discussion of the basic properties of rota-
tion matrices will begin with a consideration of matrices performing a
single rotation. Then the properties of matrices of successive rotations
will be discussed.

Single Rotations

The rotation matrix performs an orthogonal transformation on some
quantity. This quantity maybe a vector or a set of vectors that tefine
a particular coordinate system. The coortite systems considered are
three-dimensional sad Cartesian. Three vectors are reqpired to define
such a coordinate system. In this paper, a triad of vectors defining a
coordinate system (or set of coordinates) are of unit length, at right
angles to each other (mxhual.ly orthogonal), and oriented with respect to
each other in such a way as to form a ‘%ight-handedl~system.

Rotation matrices perform the operation of rotation on these quanti-
ties; that is, the quantity obtained by transformation differs only in
orientation from the original quantity. Not only does it retain its size,
but, if a coordinate system is the rotated qgantity, the unit vectors of
the new coordinate system are mutually orthogonal in the same way as were
the unit vectors of the old.

Special forms of rotation
matrices.- The matrices of simplest
form are those that use one or
mother of the three unit vectors
as an axis of rotation. In the
sketch adjacent, a new coordinate
system is obtained from the old by
a rotation_through the @e q
about the 1 direction. Several.

Sketch (a)
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~tegs San be noted in the sketch. The three unit vectors are labeled
1, 2, 3. The original_set has the subscript o; the new, the subscript n.
The rotation with the 1 vector as an axis is said to have a positive sase

#

if it has the sense_of rotation of a “right-hand screw” which is advancing
along the positive 1 direction.

If an old and a new set of coordinates are related as shown in
sketch (a), the components of a vector (or the coordinates of a point)
in the new set are related to its components in the oldby the following
set of equations:

x~ = Xlo

x= = x~cos cp+~osin Cp

X3n ‘ -xmsin cp+~ocos q

1

which is the same relation obtaining between the new unit vectors and the

(la)

old

This system canbe put
of the matrix emerges:

in = To

%= Z!Ocosq+~osin (p

%= -Z#n q+~ocos ql

into the folhwing tatnilar

X2(3 %0
o 0

x= o Cos ql sin (p

*n o -sin q C08 q

How to get eqpations (1) from the table is clear:

(lb)

form from which the shape

(2a)

one reads along a row,
multiplying each meniberof a rowby its cohunnheading. The arrangement
C= be changed to read like an equation if proper conventions are adopted
to nmltiply the elements of the table by the correct qyantity to give
equations (1):

(2b)

*

w
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With the proper conventions adopted, this table is an equation which can
8 be synibolizedthus:

where (q) is the

[new components] = (T)[old components]

matrix with deMellt=:

(2C)

[1
10 0

0 cos q sin q

O -sin q cos g

Equality indicated between two matrices holds If and only if
corresponding elements are equal. Corresponding elements of two matrices
are the elements in the ssme row and colimn in the two matrices. The
convention used in multiplying matrices can be determined by comparing

. equations (la) and (2%). In equation (2b) there are three matrices
whose synibolsare [new components].,((p),and [old components]. The first
and third, colurm matrices, have three rows of elements zdl forming a

u single column. The (q) matrix has tine elements grouped into three rows
sad three columns. Equations (1) indicate that the product (2b) or (2c)
stands for three equations. TO obtain the first of eqmtions (1), the
elements of a given row of (qJ) are multiplied by each one of the elements
of the following colunm matrix, snd the products added. For exsmple,
for the first row in (q), the elemeat of colum 1 is mltiplied by the
element of row 1 in [old components]; the elment of column 2 h (q) is
multiplied by the elememt of row 2 in [old components]; element of
column 3 in ((p)is mltiplied by the element of row 3 in [old compon=ts ].
!l%esum of these products is equal to the element of the first row in
[new components]. The procedure is repeated for each row of ((p)until
all three rows of [new components] are obtained.

The three simplest rotation matrices together with a sketch of the
operation each performs are shown below:
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io=in

Sketch (a)
A!!

C
10

P
2.=sn

e-
3. 3fl

Sketch (b)

%m
90

t

3.=3n

Sketch (c)

[1
10 0 1
0 Cos Cp sin q = (q)

O -sin q cos p

[1
cos e o -sin e

010 =(e) \ (3)

13ine o cos e

[1
Cos $ sin ~ o

sin ~ Cos ~ o = (If)

o 01
d

The three special forms of rotation matrices given next to the sketches
are the operators most commonly employed because they are simple in form
and easy to visualize. It is not necessary for one to know their exact
forms offhand, since they are easily derived.

General form of rotation matrix.- Each of the three rotation matrices
in equation (3) is a special case of the general form of rotation matrix.
The derivation of this gaeral form follows easily from certain consider- ‘=
ations concerning vectors. (The notation used below and in subsequent
sections of this paper is explained in the Appendix.) A vector is a
geometric or dynamic quantity, containing a ugnttude wd a sense, which
exists independ=tly of any description of it in a particular coordinate
system. Thus, if v is some vector, say, a velocity, then



where the subscript and superscri@ n~s and Ots refer to new snd old
coordinates, respectively (the new hating been obtained from the old
coordinates by a rotation), and the SUIMcrU?t nm e~~ ~_~-te ~~ com-
ponent of the vector. !I!hedot product of T with 1 , 2 , and 3 in turn
gives

-n -n a -n
since 1 ●1 = 2 .2 = ?“? = 1 and ~-~n = in-~n = ~n-~ = O. This set
of equations can be represented in the matrix form

s

s

=

[

-0 -n
1 =1

iO”Zn

io=~n

(4)

me 3x3 matrix in (4) is the desired general.expression. Since the vectors
in the matrix are of unit ma@tude, the elements in the matrix are simply
cosines of angles. Each of the three rotation matrices in (3) is a special
case of that in (4) obtained hy ~ing one of the unit vectors of the new
coordinate set coincide with one of those of the old. The sines of angles
in (3) are the cosines of 90° plus or minus those angles.

Successive Rotations

Matrix multiplication.- In writing out the terms resulting from the
multiplication of a three row, three colmm matrix (called a 3x3 matrix)
by another 3x3 matrix, one follows the same procedure as that described
in the previous section. The pro~ ct is a 3x3 matrix, rather than the 3Xl

u matrix obtained above. The procedure described furnishes the elements of
one column of the product. For example, let (C) = (A)(B):

-l
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The subscripts on the various elements indicate the position of the ele-
ments in the matrix. The first subscript in&icates the row, the second,
the column the element occupies. Since the elements of two matrices are
equal if the matrices are equal, nine equations are contained in
(C) = (A)(B). Two of the nine are:

Cll = allb11+a@21+aMb~ 1

All nine equations are contained

3

in the expression cik = T aijbjkc

j=l

This expression also describes the method of multiplication, for, to
obtain the element in a gfven row (i = 1, 2, or 3] and column (k = 1, 2,
or 3) in (C), each of the j column elements (j = 1, 2, and 3 in turn)
of row i in (A) are multiplied by each corresponding row element j
(the same J = 1, 2, ad 3 in turn) of column k in (B) and the resulting
terms are added.

Thismultiplication procedure is general.1 It therefore applies to
two special multipliers, the unit matrix and a constant.””The unit matrix

—

corres~nds to the nuniber1 in arithmetic which has the ~royerty that the
product of the multiplication of any nuniberby 1 is identical to the origi-
nal numiber. This proyerty cem be stated operationally in the following

l~e ~tiplication procetie IS gamral provided the matrices are
conformable (ref. 1, p.~). Conformabilitymeans that in the product

%_

I
(C) = (A)(B) Or Clk = aijbjk there must he as many elements with b

j=1
index j in bjk as there are in aij.
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way: Unity is
a fashion that

that multiplier which operates on a ml.tipli.candin
the resulting

matrix with this property is
product ii the original ml~ipl.icand.
the unit matrix, which has the form:

1
too

010

Qol

9

such
The

It can be written synibolicallyas (I), and is the “diagonal matrix” all
of whose main-diagonal elements are unity.

The product of a constant times a matrix is a n&rix each element
of which is the constant times the corres~nding element of the titipli -
csnd nwkrix. Thus, if (c) = k(B), then ‘~j = ~bij.
also be written

k

A constant can therefore be called a diagonal matrix

The

with
constant elements.

Matrix addition.- The sum of two matrices is defined
whose elements are the sums of the corresponding elements
matrices: let

[1

alla~~

(A) = azla~a~

as1~~3

Then (A) + (B) is the matrix:

[

all+b11
v

a21+b21

.
asl+b3~

[1
b11b12%m

and (B) = h21bzba

b31b32b3

—

This identity’can be written in the form (A)+(B) = (A+B).

equation can

equal.and

as the matrix
of the added
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Geometric interpretation of rotation matrices.- The rotation matrix
not only partakes of all the properties of matrices given above, but also
may be interpreted geometrically as em operator that rotates a coordinate
system through some sngle about some axis given in the coordinate system.
Multiplication of two such operators corresponds to two successive rota-
tions. If the operation depicted in sketch (a] is followedby another
identical operation, the total operation must consist in a sidlar rotation
of twice the magnitude of either one. That the algebra agrees with the
geometry is seen by multiplying the rotation matrices together:

.

Lo -sinql#o.,1-cos,2dn,= -s,ll,,,ill,1+cos,2cas,1oJL -sin&+rpJ cos(q)2#pJJ

●

The order of the matrices implies that the operation (ql) is first
.

tobe perfozmed on whatever is to its right, followed by operatingby ((p2)
on everything to its right. The order in which two matrices are written
is usually iwrtant. (When a nunlberof finite rotations are performed
about the same fixed axis,
examples of rotation about
in which the rotations are

rcos e o -sin
7P

the order is not signiflcemt.) The-following
two different axes illustrate that the order
performed is imprtant.

Oi -s n

10

0 C!os

r cos e o -sin e
1

1=sin qJsin 6J Cos q)

J

sin q cos e

coscpsin e -sinq cosTJcose

o 0
Jr

cos e sin e sin cp -sin e cos

7

1010 H
o

H
Cosq Stiq = o Cos Cp sin q

sin e O cos e o -sin q cos cp Sin e -cos e sin qI Cos 9 Cos J
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If the q’s and 6’s are respectively equal in the two products, then
8 the product ~trices are not equal.

Wtrix inversion.- After a new coordinate system has been obtained
by rotation from an old, it is clearly possible to regain the old by
another rotaticm. The second rotation is said to be the inverse rotation.
If the matrix of the first rotation is (q), that of the inverse is denoted
by (q)-L. In symibols,if

[new components] = (P)[old components1

thal

[old components] = (q)-l[new components]

It follows, by @tiplying the first equation by (q)-~ and the second by
(q) *t (p)(p)-’ = (I) = (CP)-l(q}where (1) is the unit matrix. Written
out, the matrix (cp)and its inverse have the following form:

,,)=[;::;j (~)-l=[;:-:::

Upon examining the two matrices, one sees that the inverse rcatrixcan be
obtained from the (q) matrix by exchanging the angle -q for every q.
This property of rotation matrices, which is not possessed by other
matrices, again confirms that the results of the matrix algebra agree
with the geometry, for the inverse rotation geometrically is the ssme as
a rotation in a negative sense.

Inversion of a rotation matrix can also be achieved by transposing
its elements, where the transpsed matrix is obtained by exchanging ele-
ments across the main diagonal of the original matrix; that is, if (B)
is the trsns~se of (A), then bij = aji, for ~ple, bla = aal. b
(g), since this operation replaces sin p by -sin qJ and vice versa, it
is equivalent to replacing cpby -q.

Reversal property.- Suppose there has been a sequence of rotations,
for exsmple, a (q) followed by a (9) rotation. A consideration of the
geometry indicates that to return to the old coordinates from the new,
one must rotate first through (-6) or (e)-=, then through (~) or (q)-l.
It is easy to show that again the algebra and the geometry agree. First
of all the product operation (e)(q) is itself an orthogotil rotation
operator. Hence [(G)(q)l-=[(G)(CP)l= (1). But since (G)-i(tl)= (I) =d

[

q)-’(q) =(I), itmustbetiat (cp)-’(0)-’(e)(q)=(1). As a result,
~)-1(8)-1 s [(e)(q)]-=.In words, the inverse of a product of matrices
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is the product of the inverses of the matrices tak~ in reversed order.
It is worth repeating that the property (-q) = (qJ) iS not a general
property of matrices, but bel.ous to those =trices that Perform o- a..
rotation.

‘w

u

EXAMPLE AITLICATIONS

Rotation of a Vector About an Arbitrary Axis

For a first example, the form of single rotation matrices will be
generalized. The rotation will no longer be performed about one of the
old coordinate directions, but about an arbitrary axis, that is about an
axis Ti of unit length with components nl, na, and n9 in the given
coordinate system, Another difference from the previous discussion is
that in this example a vector S is to be rotated about the axis Ii
through some arbitrary angle q into a new position Z Heretofore} we
coordinate system was rotated, and to transform a vector meant to express
the same vector in two coordinate systems with the same origin but with
one system rotated with respect to the other. This difference, however,
reduces to a matter of sign, for to rotate a coordinate system through a

—

positive angle is entirely equivalent to rotating a vector in the (now
fixed) coordinate system through the same angle but in the opposite sense. “ ● “=

Sketch (d)

pure vector methods

The quantities given in the probl_m are illus-
trated in sketch (d). A unit vector n has the

.

components nl, n2, and ~ in the coo@i~ate s@em
formedby t~e tri~d o~ uniitvectors 1, 2, and 3.
Therefore n = n11+n22+& and n12+n22+ 2 = 1. It
is desired to rotate another vector P ? with given

compon~ts Pl~ P2, ~d ?%) throu~ some giv~ -e
cp into the new position shown in the sketch as the
vector ~. The problem is to find the new components
ql, Q, and qS in terms of g and the components of
~ and E.

This problem has been solved both by matrix
methods (ref. 1, p. 253; smdref. 3, p. g6) sndby
(ref. 2, p. 168). The method here will.use only the

&trices already dis&ussed,”and will illustrate the approach adopted in
succeeding examples in this paper. The general proc@re is as follows:
The vector ii willbe thought of as one of a triad of unit vectors fo~ng ‘-
a coordinate system. The vector ~ will be expressed in this coordinate
system which will then be rotated in a negative sense through the desired w
angle q. The resulting new components of ~ will thenbe returned to
the fixed coordinate systemby an inverse transformation. These will be
the desired components of ~. .
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Let [(8)(~)]‘= be the matrix transforming F from the fixed into
the n coordinate system. Then

●

[

q:

%2

%.

where

[1
P1

= r(e)(lf) l(-d[(e)(lkr pa

P

Eos e o

1[
-sin 8 Cosq Sinl$’ 8

010 -sin + Cos $ 0

I_Sineo JLCos e o 01

Isin6 cos If sin 8 sin ~ Cos eJ

and

L

[

1 0 0-

(g)= o K=q Sinq

-sin q cos cp-

(5)

The angles ~ and G csn be eliminated by means of the components of ~
in the fixed coordinate system. Since

El=[(’)(”’]’’r:::::-Il[l
nl = cos 8 cos ~; n2 = -sin q; ~ = sin e cos ~. From the latter

expressions one gets: Cos * = 4-; cos e = M/-;
sin e s ~/d’. Therefore,
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r -nl% -%3

1
‘l-S

and

F=-4[(e)(v) l-~ = 1

●

.

Performing the operations indicated ti eq~t~.on (5) one obt~ns a matrix
with the following elements:

.-
—

The elements of the first column

n12+ m*22c08 cp
*2COS ql

(nlz+n#) ‘(n=2+n5&)

= nln~(l-cos cp)+coscp

#



MICA TN 3568 15

nln2-nlnacos(p+~sin q

= nl~ (1-COS q) - n,2sinq

The elements of the second column

nlna(l-cos cp)-n@n cp

n#+(nl.%@)cos q = n~(l-cos cp)+cosq

n=~(l-cos q)+nlsin (p

The elements of the third colwm

= nl~(l-cos q)+n2sin qI

‘%&cos (p-m12COS-2+= ~
n12+~2

=?l.#=(1-cosg)+ na2n~2cos qwn12cos q+~2(n12+n#)cos q

n12+~2

=~~(1-cos Cp)+cosCp
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With these results, equation (5) can be mitten in the form

[1[
%nlnl(l-cosq)+cosq

1
nlna(l-cosq)-~sin q nl~(l-cos q)+nzsinq

%?= nlna(l-cosp)+~sin q nzna(l-coscp)+cos~ na~(l-cos q)-nlsinq

% nl~(l-cos q)-nzsing n2~(l-cos q)+nlsinq ~~(1-cos Cp)+cosT

r’lnln’n2n7V4[1-COS(p) n2nl n2n2 ~ +cosq(l)+(sinq) ~ [1
P2

P2 (6)

%

w

M—

75i

P2

29

where (I) is the tit matrix. To see that eqwessions (_3)are contained
tn equation (6) one must recall that whereas equation (6) expresses the
rotation of a vector in a fixed coordinate system, expressions (3) rotate
the coordinate syst@m with the vector fixed. Since the two operations
are oppaite in sense, the angles in the matrices will be opposite in
sign. With this in mind, after letting ~ equed first nl~, then n2~, .
then n~~, ad letting q equal.first -q, then -e, then -~, one obtains
the expressions (3).

—
.

A valuable by-product of equation (6) is obtained from considering
the vector ~-~ generated during a small ti_meinterval by a r?tation
through the small angle q. If, in the limit as At+O, q/At+q = ~,
then

where $ is the velocity of the point p as the vector ~ rotates about
Ii with angular speed u. Equation (6) becomes —

.

1
P1

P2

Ps

+ Mm
At%@

E9L91
At

o -n= nz

MO -n I

-nz nl O 1.
1

P1

P2

R3
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where Qj W) and ~ are the
fismdfix~ is the vector or

com~nents of tie angular velocity vector
cross product of the vectors Cland ~.

Location of an Airplane on the Surface of the Earth

One problem of some current interest concerns the study of the motion
of an airplsne over a significantly large sector of the surface of the
earth. With a simplif@ng assumption, the analytical expressions of the
geometry required in this problem provide a good example of the use of
matrices in orthogonal transformations. The reason for the need of
geometry here is that the airplane equations of motion require specifi-
cation of the gravity vector direction which changes as the drplane moves
over the earth. For the example, the gravity vector is assumed to be

. directed toward the origin of a set of coordinates which is located at
the center of the earth (called earth coordinates).

. The expression of the direction of the gravity vector with respect
to the airplane requires lamwledge of the pcsition ad orientation (that
is, heading) of the airplme with respect to the earth coordinates. This
knowledge Is determined from the tine history of airplane velocity, and
the specifications of the airplsne’s initial position ad velocity. The
geometry is set up by establishing a set of earth coordinates which
rotate in SU* a way that the moving airplsne is located on one of the
coordinate directions. In the sketches below, which are intemded to

TeO

<

.

~ e.

Sketch (e) Sketch (f)
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.

the parameters used in the geometry, earth coordinates are labeled
airplane body coordinates are labeled a. .

Sketch (e) shows how’’presentearth coordinates” are derived from an
original set of earth coordinates: the sequence of rotations, each of
which is made in a positive sense, is first through the angle Y, then
through the angle @Xfinally through the angle ~. Each rotation has the
matrix associated with it which is given by the expression tith the cor-
responding lower case Greek letter in expressions (3). Three similar
rotations through singles ~, e, and cp serve to determine the present
airplane coordinate orientation with respect to the airplane’s original
coordinate s~tem. “Sketch (f) shows the relation between the original
earth and original airplane coordinate systems. The original airplane
coordinates are derived from the original earth coordinates by a (1-like
rotation about the ~eo axis through 90° in a negative sense. Two other
~les must be specified, which relate the airplane’s velocity vector to

-,

airplane coordinates. These angles are shown in sketch (g).

Sketch (g)

The sketch shows that the airplane
coordinate system is obtained from the
airplane yelocity coordinate system
(airplane wind coordinates) first by
a positive rotation through the angle
-p (p is the angle of sideslip), then ● -
by a positive rotation through the
angle of attack a. These angular
designations are conventional.

--

With the geome~ry so set up, the
gravity vector is g . -gre; the air-
plsae velocity vector is ~ = v_~w;~d
the airplane position vector R = R1 .
There remains the need to express ~
in aircraft coordinates and, hav~

expressed ~ in earth coordinates, to determine the angular rates I’,6,
and 6.

The equations connecting the various coordinate systems canbe
expressed as follows:

[presmt airplane coordinates] = (P)(e)(y)[initial airplane coordinates]

= (9)(e)(~)(-90°)[initial earth coordinates] .

[present airplane coordinates] = (a)(-P)[present wind coordinates] .

[present earth coordinates] = (0)(Q)(Y)[ititial earth coordinates]
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From these equations one has
.

[present airplane coordinates]

1(8)

and

[present earth coordinates]

{ }
= (P)(e)(*)(-9~0)[(@)(e)(’3!)l-= ‘=(a)(~][pres~t wind coordinates1

\ (9)

or

x

Ve =
‘{ }

(~)(~)(*)(-wO)r(@)(@)(Y)l-l -=(CL)(-P)VW

where the subscripts on the vectors imply that the com~nents
vectors are written in the coordinate system indicated by the

of the
subscript.

The superscript -1 on the product matrix of equation (8)-in brackets
means that the inverse of the product [(@a)] is desired. It will be
recalled that [(Q)(~)(Y)]~ =(y)-l(@)-l(@)-l = (-y)(-Q)(-@)o S&ce the
whole product matrix of equation (8)”is used in-tiV&rs&-fo& h eqW-
tion (9), it will be convenient to obtain it or its inverse as a unit
first and then form the product with (a](-~).

Equations (8) and (9) can be simplified by setting the angle 4 = 0,
or the matrix (@) = (I). Only two parameters are necessary to specify
the orientation of a vector in each of the two equations. Again be~~se
only two ~rsmeters are needed, (a) and (-f3)are sufficient to exoress
the

.

airplane velocity vector & &Li-plsae-coordinates.

Equation (9) is:
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where c stamls for cosine sad s stands for sine, and where

[1
Vle

V2e *
Vge

=a3cec-t -@( -Eqmcp+sqseq) -se(sqls*+cKpseqr) -

+C6LS’$!C&3~+CeS~(C@@’+S~S8S~)+c+3sY(-scPcV+CW6WJ:

+cecY!se -emcpce

dikes+ C’$!(cqc$+s(pseqf :

-Swe +mfqce

cY(-sQ@+cq%es*)

+dv(qme)

+Sedwe .fmwqme -Sgfwqce—

Because of the presence of only one.element in
right, only the first column of the protict of

(10)

the column matrix on the
the two 3x3 matrices is

rejyired. Performing the multiplication, one gets:

+= mcp[-sece@+@sYs*ce+cwYsel+sP [-se(-s*cwsqse@)+-F( cq@+sqses*)-

c@cYscpce]+sacj3[-se(sqs$+cqsec*)+ct3sY(-scpc*+cqsesw)-cElcYqcel

-=cacp[cYces$-sYse ]+sp[cY(cqc*+sqsesv)’tsYswel+sa43[cY(-sq4+qsesl)+
v

S!?c(pce]

‘Se -ac13[cwG~+sEWYCGSY+S*YSe ]+s~[cd-sv%sqseq )+msy(w*+ws@sY) *
v

s@cYsqcel+sacP[C~SCPSk+WSGC$ )+~sy(-s~c~+c~sesv )-@wqcel

u

.
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To express the gravity vector in airplane coordinates, the inverse of the
first (3x3) matrix on the right side of equation (10) is wanted. This
inversion is performed by treamposing the matrix. Since ~ = -~~, only
the elements of the first row of the matrix in equation (10) are needed.
The resulting eqpations are

The rotation parameters q, e, ~, El,Y, which are continuous functions
of time, remain to be determined. It is assumed that the rate of rotation

—aof the airplane, Q = pia+q7+r~ , is know continuously from airplane
equations of motion. The letters p, q, r are the conventional terms
for the components of fia in airpl~e coorfinatesc The rates $, ~, $
will be expressed in terms of p, q, r. E the same way, d and !! will
be expressed in terms of the components of angular rate about the earth
axes~ Q~e, &e, ~d S&. In turn, the angular rate of rotation of Cle
is obtained from the knowledge of the airplane velocities

b nates wMdh are subject to the two conditions that ~ ~J# ‘*h cOor~-, that is, that
the coordinates so rotate that the coorMnate vector 1 remains pointing
at the airplane; and that O = 6 . 0..

One convenient method for obtaining the expressions for $, ~, and $.
is given below. Other methods can be found in references 2 and 4. The
SJU@ar V~OCitY vector C= be expressed in the forms

where the coordinate systems indicated by primes are intermediate
coordinates defined by

[

is

-a
2

—a
3.

~-a!
1

1 [1
Tao

-a~
2 s (g)(e) E*’ = (q)(e)($)

.Tai
-aof
3

‘Tao

@.O

.Yao.

(U.)

(12)
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Because of the form of the various rotation matrices,

Ta=ia’ ; ?Za’=ZaO’; ~ao’=~ao

IYAC.ATN3968

.

From an examination of equations (n) and (12), one can realize
that the matrices that will be needed are (q), (e), and (q)(f3)which are
proposed below in tabular form

\
-a’ -a’
1 2 &

10 0

0 Ccp Scp

o -s Tw

iaO’ ~%t T80’

& Ce o -Se

(e) , 2’ 010

-a’
3 se o ce

r

p! pi -aOt
3

-a
1 Ce o -se

(cP)(8): aa sqse CCP sq~e
-a
3 qse -sq qce

(14)

Now, returning to equation (I-1)one can solve for $, ~, and $ by forming
the appropriate dot products, then consulting the tables in (14):

$=

.

.

.
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-(p-o )se+qsqce+rcqme

$s2e+qscpcG+r~cG

$C2G = (qsq+rcq)c~

qs(p+rcq

The term (p - ~) in eqyation (15c) was

The angular velocity of the earth

F = Qeu ~r+~e~ ?7+fl:r

I

1(15C)
eliminated by using equation (15a).

coordinates is

-r
3 = 6P’ ++JO ‘

The primed coordinates here are the same sort of intermediate coordinates
as those in equation (U.). The procedure just completed for $, ~, $
could be repeated here. But since.the only chsnges are the names of the
components and the fact that O = @ = O, 6 and ~ cm be written down
Just by comparison with equations (15):

A final step remains in the geometry, the determination of ~. This
vector is obtained from the knowledge of the airplane’s velocity:
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The term fi expresses the total rate of
plane, that is, its velocity. When this

NIC~ TN 3968

.

-e of position of the air.
velocity is expressed in the .

rotating earth-coordinates,however, it takes the explicit form shown in
the expression on the right. The last term of this expression was derived
in equation (7). It gives ~he full expression for the velocity in rotating
coordinates if the vector R is constant in length. The other term in

the expression above, ~ , accounts for changes in length of ~. Since
Ob .-

-e -e -e -e&-e-e7= Vlel +v2e2 +Vges = 1 ~+RQxl
at

Ub

or

v2e.= R&e =R%c@

—

●

—
.

These expressions complete the geometry.

Although some of the transformations obtained along the way could
have been obtained more easily without the use of the matrix method, this
method is very valuable in providing a simple way of getting the co~lete
expressions required in the problem. Furthernmre, once a person gets the
feel of the matrix method he appreciates its dual advantages of being a
straightforward method of getting the correct expressions he wsm.tsand
of providing a simple and clear view of the transformations required in
the problem. The sunmary below, which actually was the analysis of the
problem used before any computations”weretide, shows in simple fashion
the various relationships involved in speci~ng the geometry:

—

.

.
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[present airplme coordinates]
.

= (~)(8)($)[ititial airplane coordinates]

‘ (’?)(e) (V)(-W”) [ititial earth coordinates]

= (G)(-P)[present wind coordinates]

[present earth coordinates]= (~)(’l)[initial earth coordinates]

To express ~ = v~ in earth coordinates:

The subscripts on the vectors indicate the coordina~e systemmin which
their components are to be expressed. To express g = (-g)l in airplsme
coordinates:

{ }
Ea = (~)(y)[(9)(G)(4’)(”WO)]-1‘l~e

.

To determine the rotation of the earth coordinates:.

Position of a BomiberRelative to an Attacking Airplane

The determination of the position of ahoniber relative to an attacking
airplane is a geometry problem that has to be set up in order to study
weapon fire-control systems by means of an saalog computer. The final
result sought in the geometry is the orientation of the line of sight snd
the range of the botier from the attacker. As in the first example, with
the proper precautions, a coordinate system can he assigned so as to make
the tie of sight correspond in Mxection to a unit vector of the coordi-
nate system. With this assignment made, one seeks ~he r~te of rotation
of the line-of-sight coordinates required to -e R = Rl~. Since the
line-of-sight orientation relative to the airplane is desired, its rate
of rotation will be expressed as the airplane rate plus a rotation rate
relative to the airplsae. Furthermore~ since the study of automatic
fire-control systems involves the use of a tracking radar, it will be con-
venient to express the relative psition of the line of sight by means of
the same kind of mgles by which the relative orientation of the tracking
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line or heading of the radar antenna is expressed. me precaution
mentioned above concerning the assignment of a coordinate system to the
line of sight can be specified in a way to bring about the corres~ndence

“

between the tracking line and llne-of-sight systems. The condition will
be: since the antenna does not bank relative to the airplsne, neither
will the line-of-sight coordinates.

The velocity of the bofier, v% = vbzb, is assumed known. The air-
plane velocity given in wind axes is ~ = V%W ~ singleof-attack, a,
sideslip, p, and the airplane angular velocity, fla= pia+qd+rja, are
assumed to be obtainable from the solution of the airplane eqwtions of

.

motion. One cm obtain the angular velocity of the line of sight, fiz,
by finding its components from the equation

;2 = V%z+ . ~1

As before, the subscripts indicate the
vectors are to be expressed. Eqwtion

~+R~:X ~z
&

(17)

coordinate system in which the
(17) implies that the bomber and

airplane velocities are to be &pressed ”~-line-of-sight coordinates.

me transformation from wind coordinates (in which ?a = varw) -to
line-of-sight coordinates can be achieved by

[line-of-sight coordinates] = (E)(A)[airplane coordinates]

-a3

Sketch (h)

= (E](A)(a)(-~)[wind coordinates]

-0I

(18)

wJ#we (A) performs a rotation about
3 and (E) performs a rotation
about 22 as shown in sketch (h).
The nomenclature and order of
rotation correspmd to usage in
some present fire-control systems.
The magnitude of these angles E
and A speci~ the relative
orientation of the line of sight
is the final desideratum of the
geometry.

,

If the bomber velocity coordi- -
nates are first transformed into
wtnd coordinates, the rotation matrix
in eqyation (18) will complete the
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trsmformation to line-of-si~t coordinates. It is
m form the bo?ibervelocity coordinates first into the

27

convenient to trsm -
initial attacker wind

coordinates, then transform them into present wind coordinates. The
transformations

[bofier

[present wind

which gives the

can follow the

coordinates] =

coordinates] =

transformation

scheme:

(@b)(@] [initial wind coordinates]

(~w)(ew)(~} [i~tia~ ~nd cmr~nates ]

[present wind coordinates]

. (@W)(eW)(~)(-@)(*b)[bO*er ~OO~tes] (19)

The property of rotation matrices that (~b)”1 = (-Vb) has been used in
equation (19). Now, since (Yw) and (-p) are rotations about the ssme
axis, (~)(-Yb) caa be mitten (Y) where the single Y = ~-~.

The complete problem now has the form:

[1
‘11

’22 =

‘32

L

:o)(e)(y)(-eb)

.

--

Vb

0

L0 J

--

Va

0

L0
J

(20)

The superscript? ~ @w and @w can be dropped without tiiguit y. The
qpamtities O, e, ~ are to be obtained from fia. The ~gular rates,
Gb, ~, specifnng the bomber motions are assumed known; E =d A are
to be obtained from the relative singularvelocity U = ~Z-ha. The
matrix (m)(-~) is given in equation (10). The matrix (E)(A) is obtained
from (a)(-~) by substituting E for a and A for -P. Then
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(E)(A)(a)(-p)= E~~-:]~ ;;-:]

[

cEAcac~+cEsAs~-sEsac~-cEcAoa,sfWcEsAc~+sEsf3sa-cEdM@sEm-

= -sAcac@Aq3 sAgasP+dcP sAsa

sEwhac~+sEsAs~+dikacj3-sEcha.sj3+sEsAc~-~Sj%U -sECASG!-CEW

The matrix (G)(Y) csn be obtained from the titrix (E)(A) by the appropriate
literal substitutions. Then

(0)(e)(Y)(d) =

Lo H-00 co secY! Ses’1 ce~ ~s& O c@J

[

i-scwe%-seseb *Y cemeb-smeb

. -cosYc@+so( sedkekfwe~) dcY+somsw 1-cwfkdw (secwe%ceceb

imwe%s ( Sewekeseb) -Sow+dsemf smkeWo(seCw5%e@~)

The qU~titieS 6, 6, ~, fi,and A remain to be dete~ned; @b
and ‘!!bare assumed giv~. The three angular rates 6, ~, and ~, by
means of which the airplane wind coordinates are specified, are entirely
analogous to @, 6 and $ in equations (11) and (15). Instead of p, q,
and r, however, the wind coordinate rates $lwlwj 42WZ, and flwgw must be
used. These components can be found as follows. Let ~-w be the angular
velocity of the airplsme with respect to the wtid axes. Then

&3-w = Cz-a-;yw= til:wTa+&w~a+fia-w~a
2a Sa

.

.
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This equation is again equivalent to equation
* + =9=0= The individual expressions can be

29

(U-) for the condition. .
obtained from those on the

right in (16) after the appro~riate literal substitutions

The wind
components in

axis angular velocity, ~w = ~a-~~w has, therefore, the
airplsme coordinates Qv . p-~ sin a ; fi~a=q4 ;

@ r+~ cos a . These components ar~atransformed into components in
t~~ wind axis system through ~e trausfozmation inverse to (a)(-~). With
that transformation done, 6, Cl,and *W are expressed in terms of

P> % r> c%,and ~.

The quantities A sad ~ are found in sindlar fashion, being analogous
to -~ and &, respectively. The relative velocity of the line of sight,
~, equsls Klz-?ia. The two components !#l and fl~z

!?
are found from equa-

tion (20); @ is expressed in Iiqe-of-s ght c~rdinates by means of the.
trsmsformation: ~ =(E)(@. Then A end E are given by

b

(22Z=i= &-p SiII A-q COS A

%2 =~cos E= S& - sin E(p cos M-q sin A)-r cos E

Rotation Matrix Method and Gitialed Mechanisms

The matrix method gives an exln?emelysimple method of analyzing
ginibaledmechanisms because the angles in the matrices can be chosen to
correspond to the ginibslangles of the mechtism.
C!onsiderthe antenna depicted h sketch (i]. The

z,

3 axis is free to rotate in bearings mounted on a \

base and carries a frame which Q be called an

Q-

‘\
outer ginibal. Call -~. the angle made by the O— —-]
rotation of the axis relative to the base. The
2 axis is free to rotate in bearings mounted on
the outer ginikl, and carries the radar aatenna

!’

with it. KU -~i the sngle made by the 2 axis
I

in turning with respect to the outer ginibal.
These physical angles, each measuring a rotation

i
&

3

Sketch (i)
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about an axis
each of which

.

of the mechanism, are the same as the analytical angles,
describes a rotation about an analytic axis. The analysisf “

angle A is measured by -r. , and E by -ri .
—

h orientation gyro is smother ginibaled.mechanism. Sketch (i) repre-
sents a gyro if the 2 axis,-instead of carrying an antenna, carries another
gitial that supports the gyro rotor, and if this rotor has its spin axis
along axis 1. An orientation ~o has the property that its spin axis
tends to maintain its orientation in space no matter what the motion of
the base. Then the orientation of coordinates in the base is related to
axes fixed in the inner gitial by (ref. 5):

[base coordinates] = (ro)(ri)[inner ginibalcoordinates]

Customarily in the -lysis of airplane motion, the present airplane
orientation is described relative to an initial orientation by the angles

$(Yaw), 6, md~ . Hence --

[present airplane coordiruates] = (~)(0)(V)[ititial coordinates]

= (~)(6)[yawed coordinates]
.

By fixing a gyro to an airplane appropriately, ro and ri can measure Q
4

and e directly. The correct arrangement for the measurement of cpand @
requires the 3 axis aligned with the negative airplame 1 axis, 2 with the
airplme 2 axis, and 1 with the airplane 3 axis under the null conditions

~=e =0 and (sketch(i)) r. =ri =0. Airplane yaw is not measured.
This gyro arrugement corresponds to the standard vertical ~o arraug-ent.

—

Transformation of Moment of Inertia

Because they offer a good _ple of the use of rotation matrices,
the equations of transformation of moment and products of inertia and of
the force and moment derivatives of airpl~e dynamics will nowbe derived.
The special cases involving a transformation from one body axis to another
through a constant e-like--angleare well Ire-- (e.g., ref. 6). But since
transformation equations, if their
misused, it is desirable to derive
illustrate the general method by a

The fundamental dynamical law

m=

derivation is not understood, can be
the transformation in
particular and cogmon

containing the moment

(CT)R

general, and
example.

of inertia is

.

*
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where F is the angular momentum vector, n
● vectorjand (J) is used here to represent the

1(J) = JW Jn J=

Jxz Jyz Jz~

where p is the mass density of the body at
is SJIelement of volwe.

is the
moment

_ar velocity
of inertia matrix

location x, y, z, and d7

The clue to determining the law of transformation of (J) is the
recognition that equation (21) is a general dym.smicalexpression having

. the same form no matter in which coordinates it may happem to be qressed
in g particular example. ~dependently of the coordinates in which they
are represented, angular momentum aad angular velocity are connected by
eqyation (21):

so=(Jo)fio

Now we have seen in transforming
components of a vector transform
Thus, if r is a constant angle

[new coordinates]

then

jjj. (r)fio ; ‘n

then
.

; ~ . (J)fin (21)

airplsne and bonibervelocity that the
in the same way as do coordinate systems.
of rotation about some axis so that

= (r)[old coordinates]

= (~)=. or ~ = (r)-%n

& = (r)~o = (r)(JO)(r)-’% = (Jn)~n
*
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The transformation
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sought has the form

(Jn) s (r)(JO)(r)-l

If (~) is a transformation through a e-like angle, then

(Jn)=~;-;]~;;][:~l

[

J~c=T+J@2r-2J~@rcr JWcr-JWsr (Jm-Jzz)srcr+Jxz( c=r-szr)

= JWcr-Jyzsr JW J~r+Jyzcr

(JH-Jzz)srcr+Jxz(czr-#r) JWsr-i-JWcr Jnszr+Jzzczr+2Jxzsrcr 1

(22) -

Transformation of Force and Moment Derivatives of x.

Airplane Equations of Motion

To determine the law of transformation of the force and moment deriva-
tives occurring in the equations of airplane motion, it is necessary, as
with the moment of inertia, to find the derivatives in an equation”whose
form remains constant under the transformation. If the dependent variables
are the six components of linear and angular velocity, the equations cam
be written in vector form as follows: ‘– —

&K]+(a)[~] = (Ml)[~]+(l&)[E]+(~)[~]

:[51+(0[51 = (U) [q+(%) [~]+(%) [~1
1

where F is the Linear momentum, ~ is the angular momentum, ~ is the
linear velocity, Q the angular velocity of the airplane, and

(23)

.
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The transformation law of each of the (Mi) in equation (23) is identical
to that of the moment of inertia, and is derived in the same way.
Glauert!s formlas (ref. 6) are obtained using the e-like rotation matrix
(I’)as in equations (22). For example, replacing (J) in equations (22)
by (Ml) one obtains for the new XIU the expression:

CONCLUDING REMARKS

The present paper has attempted to show how convenient it is to use
rotation matrices when one is setting up the geometric aspects of dynamical .
problems. A rudimentary knowledge of certain aspects of matrix algebra
provides a tool entirely adequate for the solution of these geometric
problems. me compact notation of matrix algebra permits the clear view
required for their straightforward solution. me detailed computation
of the expressions required in a particular problem becomes a matter of
routine, snd can easily be checked for errors. No algebraic dexterity
is reqtired to determine the parameters involved because they are obtained
by the smne direct methods used in the rest of the problem. Many of the
parts used in one problem canbe saved and used in other problems.
Finally, because planning aad computing become distinct tasks, it is a
simple matter for one to detise and investigate various paths to the
solution of the geometric problems without performing any computations.

Ames Aeronautical Laboratory
. National Adtisory Committee

Moffett Field, Calif.,

.

for Aeronautics
Mar. 4, 1957
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A DESCRIPTION OF NOTATION

Problems whose answers are currently being sought on simulators have
caused a need for a uniform and consistent notation. The need flows from
two sources: frequently more than one quantity of a sort is used in a
single problem; and a single quantity is often required in more than one
coordinate system. The person who is studying the problem is certainly
familiar with the meanings of the s~ols he employs. But if, as often
happens, he employs a new letter for each new quantity, and still new
letters for some compments of these qpantitdes, his audience must have
consts.zrtrecourse to a glossary of symiiols. Some people, to avoid this
pitfall, use a shorthand of subscripts by which they distinguish between
quantities of the same sort. Unfortunately, this shorthand, which is not
notation, quickly becomes too cumbersome.

The notation proposed for use in the simulation of dynamical problems
has three fundamental parts. The base letter of a quantity refers to
quality; it indicates the sort of thing described. Superscripts are used
to distinguish two quantities of the same quality. Subscripts are used
to specify the coordinate system in which a quantity is represented, and

.

to name the components of a qpantity in a particular coordinate system.
For example, the sy?ibol 1? designates a linear velocity; V% is a particu- . “-
lar linear velocity, say, bonibervelocity; T: sigifies the representation
of botier velocity in some particular reference system, for example, in
attacker wind coordinates.

When modification of abase letterby superscripts or_subscripts is
not required for clarity, it should not be used. Use of Q for the

-l= velocitY of tie line of sight relative to the attacker exemplifies
the simplification possible. ~ this case, of all the angular velocities
considered one need not have a superscript. It is convenient that the one
_ar velocitY thus si~~ed outbe eifier the one most used, or the one
that otherwise would have the most complicated superscript. There are
many places where modification of a base letter is superfluous.

Certain letters are favored over others for certain sorts of quanti-
ties because of custom, or because of their mmmonic value. It seems to
be desirable to reserve Greek letters for angles and angular velocities.
The angles 0, ~, ‘1 have been used to describe the orientation of abody
with respect to a fixed coordinate system. Other letters describe ori-
entation with respect to moving coordinates. Each of the letters Q, e,
Y! refers to a pa~i_tiar ~ort of angle, that is, one generatedby a
rotation about a 1, 2, or 3 direction. It seems preferable to capitalize
these letters simply for typogra~ical reasons if they are to bear super-
scripts. The use of the small letters (p,6, and$ to indicate the
orientation of an airplme body coordtiate system, and p, q, and r to

.

“
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represent airplane singularvelocity components in body coordinates is
k honored by custom. It se- undesirable to chauge customary syuibolswhen

their use is not confusing and when they adequately fit the description
needed.

Another type of notation, a schematic representation of rotation
operations, provides a convenient formulation of the geometry involved
in a problem. It is derived from the fact that resolvers are the physical
means of performing rotations in snalog equipnent.

bduction resolvers (ref. 7) have the property of converting input
quantities ~ smdBo to output quantities An ~dBn where
An =_~cos I’+Bosin r ~dBn = -~sin I’+Bocos !?. That is, if A =~,
B=2, and I’= Y, the matrix (’Y)and the resolver below perform

. equivalent operations. The presence of the + sign and the short circuit
in the resolver sy?ibolshouldbe noted. The + sign indicates which out-
put qusatity cdntains the +sin Y term. For an angle whose positive.
sense agrees with the positive sense of the coortthate system, the + sign
follows the indicated short circuit in the cyclic order 1, 2, 3, 1, 2,
. . . . Using this resolver syuibol,one can write the matrix eqmtion

in the form

-V:w

The latter form is more explicit than the former. Xt conveys enough
information that a person can use it rather than the various intermediate
equations to aid hlm in wiring a problem on a sinmlator.
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